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1. Introduction

The properties of images acquired by different SAR systems may vary. Important
differences arise due to different configurations of wavelength, polarization and resolution
employed in the systems. More subtle differences come from the data processing, especidly
the strategy for combining looks and resampling. These can have a big impact on the data
handling, error andyss and image operations such as filtering. Appropriate trestment of the
data requires that one should have the correct knowledge of the image being dedlt with. In
this report, three important aspects of image properties are investigated, namely spatia
correlation, equivaent number of looks (ENL) and texture. The investigetion is carried out
using the Braisk data set, including the ERS intensty image acquired on 23/9/97 (Figure
1(8)), the JERS intensity on 4/5/97 (Figure 1(b)), and the 80-pixel and 20-pixel coherence
images (Figure 1(c) and (d)). Histograms are aso shown undernegth each image. The two

intengity images are scaled to the same dynamic range, as are the two coherence images.

2. Measurements of image properties

2.1 Equivalent number of looks (ENL)
The equivadent number of looks (ENL), measures the number of independent

intengty vaues averaged per pixel. ENL isrdated to the coefficient of variation (CV) by

2
ent =L = ®
cv?  va(l)

where the mean and variance of intensity are denoted by (1) and var(l).
The intengty in an untextured L-look image is Gamma digtributed with order
parameter L.
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wheres = (1) isthe mean. The mean and variance in the gamma distribution are related by

)

I 2
var(l) = <T . Hence the theoretical ENL vaue for a multi-look Gamma distributed image
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isequal to the order parameter L. Note that, in practice, (1) is estimated by [ = %
i=1

M
and the unbiased estimate for var(l) is V(1) = ﬁé (Ii - f)z , Where M is the number of
i=1

pixels insgde the window. If the pixels are uncorrelated, the maximum likelihood estimator

M
(MLE) of the mean is adso given by spatid averaging, i.e. %é I, . It needs to be stressed

i=1
that spatid averaging is the MLE of the mean only if the pixds are uncorrdated. For a
discussion on spatia correlation, see Section 2.2.

Three homogeneous areas were seected in the intensity ERS (Figure 1(a)) and
JERS (Figure 1(b)) images. For each area, the values of mean and variance were measured,
and the corresponding ENL s were caculated according to Equation (1) (Table 1).

Note that ENL can be noninteger due to correlation between looks. In order to find
the closest ENL, Gamma distributions with orders between 11 — 15 have been overlaid on
the histograms of the observations from the ERS data. It was found visudly that the 12-look
Gamma fits the measured vaues best (Figure 2(a)), athough the discrepancies in the interval
0.1 - 0.2 are ggnificant. Note that the vaues given in Table 1 suggest that, despite the
reasonable fit for 12 looks, the true ENL for ERSis near 14 or 15. Observed vaues as high
as those in the Table are very unlikdly if ENL ~ 12. The regions are “too smooth” to have
come from 12-look speckle. It is easy to reduce the measured numbers of 1ooks; this will
happen if the region is not homogeneous, but increased numbers of looks can only come
from datistical fluctuation. The same experiment was repested for the JERS data, with
orders in the range 4 — 8. The results show good agreement between the 6-look Gamma
digtribution and data (Figure 2(b)). The Table suggests that thetrue ENL 3 6. Smilar ENL
vaues for the ERS and JERS data have been reported by UrsulaM of DLR and Urs W of

Gamma.



Figure1-1 Bratsk imageswith corresponding histograms: (a) ERS-1intensity on 23/9/97; (b) JERS-1
intensity on 4/5/97; (c) 80-pixel coherence and (d) 20-pixel coherence.



Data sample samplesize [ V(I) ENL
(no. of pixels)
ERS @ 4080 0.1695 0.0018 15.74
(b) 6229 0.1723 0.0022 13.63
(© 2285 0.1226 0.0012 13.06
JERS @ 4080 0.4799 0.0037 6.18
(b) 6229 0.4304 0.0445 4.17
(©) 2285 0.3592 0.0301 4.28

Table 1 Estimated mean, varianceand ENL from visually

homogeneousareasin Figure 1(a) and (b).
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Figure 2 Histograms of measured valuesin (a) ERS data, superimposed on a 12-look gamma

distribution; (b) JERS, superimposed on a 6-look gamma distribution.

2.2 Spatial correlation

Spatid correlation is an important agpect to take account of in image analyss. Many
filters and andyss techniques assume uncorrelated data and the number of independent

samples in awindow is affected by this. In the following, the degree of corrdation in the




images disolayed in Figure 1 is examined.

The correlation can be measured by use of the intendity autocorrelation. The range

and azimuth intengity autocorrdation, r . and r ,, are defined as

rr(k) _ <Ii'j+k|i,j>' <|>2

var(l) @)
ra(k): <Ii+k,j\:;rj(>|; <|>2 3

wherek isthe lag, i.e. the distance from the middle pixd in the area that is being examined,

li; is the intensity a pixd (i, j), i.e (azimuth, range), (1) is the mean of the intensity and

va(l) isthe variance.

The measured r; and r , from a homogeneous area (mature stand No. 5) in the
images in Figure 1 are plotted as functions of lag in Figure 3. The important points are:

(& From Figure 3(a), it can be seen that pixelsin ERS data are Sgnificantly correlated, with
rrandr, around 0.5 at lag~1; andr,andr , around 0.2 a lag~2;

(b) The degree of corrdation is much lessin JERS (Figure 3(b)) than in ERS; r ;and r yare
indistinguishable from noise ( < 0.2 a dl lags). So the pixdsin JERS data can be
considered as uncorrel ated;

(©) Inthe 80-pixd coherence (Figure 3(c)), the only significant corrdation is found at lag~1,
wherer ,and r , are closeto 0.5. From lag~2 and onwards, the correlation is mainly
from noise;

(d) Inthe 20-pixe coherence (Figure 3(d)), r rand r , arearound 0.2 whenlag = 1. The
correlation in both directions isinggnificant a lags greater than 1.

In Section 2.1, it is mentioned that spatid averaging is the MLE of the mean intensty,
based on the assumption that pixels are uncorrelated and independent of each other. From

M
the above observations, it can be seen that %é |, can be treated as the MLE of the

i=1
JERS mean intensty. For corrdated ERS data, if complex data is available, then the MLE
of the mean intengty of an M x N block of datais given by [Oliver & Quegan|
1 1

o Wtr(Rs_'lsSA) :WSARS_lS

where R; isthe corrdlation matrix of the N complex samples S=(S,,...S,, ), * denotes



conjugate transpose, and tr denotes trace.

Bratsk -- Intensity correlation coefficient
(ERS-1, 23/9/97, mature stand No. 5)

Bratsk -- Intensity correlation coefficient
(JERS-1, 4/5/97, mature stand No. 5)
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Bratsk -- Correlation coefficient in coherence
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Figure 3 Intensity correlation coefficients calculated in the range and azimuth directionsfrom a
homogeneousareafor: (a) ERSdataand (b) JERS data with pixel spacing of 50m. Correlation
coefficientsin both directionsfor (c) 80-pixel coherence and (d) 20-pixel coherence.

2.3 Texture
In addition to the mean intendty, texture is another potentia information source in

SAR images, and different data models are used for textured and untextured images. Multi-
look pure-speckle images are described by the Gamma mode, whereas textured images are
often characterized by the k-distribution.

Texture depends greatly on resolution. In spaceborne images, e.g. ERS-1/2, texture
is expected to be averaged out, especidly in vegetated aress. There are many approaches
for quantitative measurements of texture. The two most commonly used ae (1) the
coefficient of variaion, in which large vaues correspond to high texture, and (2) the
normalized log measurement defined by [Oliver & Quegan|

T={Inl)- In{l) 4

Equation (4) in fact gpproximates the order of the k-distribution. Asthis order parameter



gets bigger, the data tends to be Gamma didtributed, i.e. untextured. Hence high image

texture is represented by low vaues of the normalized log.

Texture is measured for Figure 1(a) and (b) using the above two methods. The
intengty coefficient of variation is displayed in Figure 4. In order to investigate the effect of
window sizes on the texture estimation, results obtained using windows with szes 5x5 and
11x11 pixels are shown sSide by sde. Histograms are also shown for each image. The log
measurements are displayed in Figure 5, using the same layout as in Figure 4. Adaptive
estimation was dso investigated, but the results are not much different to those in Figures 4
and 5.

Note that the texture measured by the CV isin fact the inverse of the square root of
ENL (Equation 1). As JERS and ERS data have different numbers of 1ooks (see Section
2.1), for comparison purposes, the images in Figure 4 have been thresholded with an upper
boundary a 90% of the totad number of pixels, and images in Figure 5 have a lower
boundary at 10%. The following points should be noted:

(1) In dl measurements, there is little evidence of texture. The structures observed in fact
arefeaturesin the images.

(@ In ERS measurements, Figures 4(a, b) and 5(a, b), high texture corresponds to the
river and topography;

(b) Due to the difference in incidence angles, reduced topographic effects but more
features and lines are picked out in JERS (Figures 4(c, d) and 5(c, d)) than ERS. The
overlay of Figure 4(d) with Figure 1 (c), displayed as Figure 7, shows that the features
observed in the JERS texture do not correspond to stand information or land classes,
for example young stands and clearcuts etc. They are more related to areas with
relatively large coherence change in the surrounding aress. This causes the breakdown
of the local box estimator.

(2) Theintensty CV and normalized log measurement are “inverses’ of each other, the high
CV vaues associated with topography correspond to low vaues in the normalized log.
Note that the log measurement is dways less than zero. For easy comparison, the
negative images of those in Figure 5 were produced with an upper boundary at 90% of
the total number of pixels, shown as Figure 6. This reverses the hisograms in Figure 5,
and the colour schemes are more comparable with Figure 4. From Figures 4, 5 and 6, it

can be seen that the texture information contained in the two measurements is very



dmilar;

(3) Not surprisngly, the texture images resulting from a 5x5 window have finer details than

those from a 11x11 window, and the latter appear less noisy. The 11x11 window aso
enlarges the sze of the bright points in the images. Depending on the gpplication, both
window sizes could be useful.

3. Conclusions

In this report, the image properties, ENL, spatid correlation and texture, have been

investigated for the SIBERIA data, including ERS and JERS intensity images with pixel

gpacing of 50m, and ERS coherence images generated using 20-pixe and 80-pixd

windows. The main conclusons are;

a

The ENLs are > 12 (probably around 14 - 15) for the ERS data and 6 for the JERS
data;

The pixelsin the JERS data are dmost uncorrelated, with correlation coefficients less
than 0.2 a dl non-zero lags in both range and azimuth directions,

The ERS data has high corrdaion a lag 1 and lag 2. Thisimplies that spatid averaging
isnot the MLE of the mean in the ERS image. However, this method is unbiased and is
used for its Smplicity and acceptable accuracy;

The corrdation at lags > 1 in the 80-pixd and 20-pixd coherenceimagesis not
ggnificant. Corrdation is only significant a lag = 1 in 80-pixel coherence;

Two measures, namely the coefficient of variation and the normdized log, have been
used for examining the texture information in both ERS and JERS data a window sizes
of 5x 5and 11 x 11. The results show no evidence for texture in vegetated areasin
ether data set. The observed “texture’ isfeature-rdated, mainly arisng from the river
and topography;

The corrdation in ERS data means that multilook averaging will result in the number of

looks smaler than the theoreticd vaue. The evidence above suggests tha methods

developed for the Gamma digtribution are appropriate for both ERS and JERS data

Filtering methods based on the k-distribution, such as Gamma MAP, are not matched to the

data properties.
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Figure 4 Intensity CV of (a) ERS and (c) JERS data, estimated using a 5x5 window; (b, d) are the same as

(a, ©), but using a11x11 window.
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Figure 5 Normalized log measurement of (a) ERS and (c) JERS, estimated using a 5x5 window; (b, d) are
thesameas (a, ¢), but using a 11x11 window.
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(c)
Figure 6 Negative images of the normalized log measurementsin Figure 5: () ERS and (c) JERS,
estimated using a 5x5 window; (b, d) arethe sameas (g, ¢), but using a 11x11 window.
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Figure 1(c) (blue).
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